skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andolina, Ian Max"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Biological visual systems have evolved to process natural scenes. A full understanding of visual cortical functions requires a comprehensive characterization of how neuronal populations in each visual area encode natural scenes. Here, we utilized widefield calcium imaging to record V4 cortical response to tens of thousands of natural images in male macaques. Using this large dataset, we developed a deep-learning digital twin of V4 that allowed us tomap the natural image preferences of the neural population at 100-μmscale. This detailed map revealed a diverse set of functional domains in V4, each encoding distinct natural image features. We validated these model predictions using additional widefield imaging and single-cell resolution two-photon imaging. Feature attribution analysis revealed that these domains lie along a continuum from preferring spatially localized shape features to preferring spatially dispersed surface features. These results provide insights into the organizing principles that govern natural scene encoding in V4. 
    more » « less